Description
75 Ohm SPDIF cable - rare RCA - BNC ideal for CHORD, NAIM LINN DACs, etc., as you can connect without using adaptors which compromise performance. New cable and plugs assembled by me. This is a coaxial - 75 Ohm cable High-quality silver-plated oxygen-free copper to improve signal flow, which is especially important at high frequencies (SPDIF signals operate at very much higher frequencies (1.5 MHz and 3 Mhz) than other audio signals).Nitrogen-injected PE insulation lowers the dielectric constant to reduce signal losses. Length of cable – why 1.5m? Summary There are only two occasions in audio where a longer cable – or an optimum length cable is better than a short one. Digital cables have an optimum length of 1.5m or more. (The other occasion is for MM phono cartridges, which need a specific capacitance). The reason for this requires an explanation. Please refer to the diagram in the photos. The signal traveling down a SPDIF (so-called digital cable) is a square wave ANALOGUE voltage signal, however in reality, this square does not have instantaneous changes - the squares are sloped and somewhat rounded off, too, as it takes some time to change state from 0 to 1 or 1 to 0. The accuracy of the pulses at the end of the cable determines how accurately the source can interpret the signal in value 1 or 0 and also timing which is not so easy. The signal reflects back off the ends of the cable, the plugs, and connected equipment (echoing back and forth). It produces ghost images of itself, which can fool the receiver into thinking that the ghost signals are the original signals. With short cables under 1m, the ghost signals arrive close to the originals within the transition time frame from 0 to 1 or 1 to 0 before the transition occurs. A 1m cable means the reflection arrives at about the same time as the transition is to be recorded. With longer cables, the reflection arrives too late to influence the receiver (The transition has already been registered). Longer cables also mean lower amplitude or signal reflection; thus receiver can more easily determine between the correct signal and the spurious reflections. The bottom line is that a longer cable eliminates the false readings from the ghost images and thus reduces timing errors, called jitter, and therefore sounds better. Measurements and experimentation have determined the optimum size to be 1.5m or more. Detailed Technical Explanation for those with an enquiring mind. Why SPDIF cables should be 1.5m long. When the SPDIF signal is launched into the cable from the Transport, it is essentially a voltage square wave consisting of rising and falling edges. These edges are no more than voltage transitions from about –250mV to +250mV, the rising edge transitioning from minus voltage to plus voltage, and the falling edge transitioning from plus voltage to minus voltage. When an edge transitions, it can be described as having a rise-time or fall time. This is the time it takes for the signal to transition from 10% to 90% of the entire voltage swing. (note that this DOES Not happen instantaneously) The rise time is important because this is what causes reflections on the transmission line. If the rise time were very slow, say 50 nanoseconds, then there would be no reflections on the transmission line unless it was extremely long. Alternately, if the rise-time were less than one nanosecond, reflections would occur at every boundary, such as the connection from the circuit board to the wires that go to the connector. Typical stock Transports have around 25 nanosecond rise times. The primary concern for the manufacturer is to pass FCC regulations for emissions and electromagnetic interference and make the interface reliable. When the regulatory testing is done, they attach very inexpensive, inferior cables and measure the emissions. To ensure that the manufacturer passes these tests, they take several precautions. One is designing in the slower than necessary 25 nanosecond rise-time. Another is inserting various filters in the Transport to eliminate high frequencies from the signal. As a result of these choices, there is a hazard created by using too short a digital cable. It is a result of the slow rise time. When a transition is launched into the cable, it takes a period of time to propagate or transit to the other end. This propagation time is somewhat slower than the speed of light, usually around two nanoseconds per foot, but can be longer depending on the dielectrics used in the digital cable. When the transition reaches the end of the transmission line (in the DAC), a reflection can occur that propagates back to the driver in the Transport. Small reflections can occur in even well-matched systems. When the reflection reaches the driver, it can again be reflected back toward the DAC. This ping-pong effect can sustain itself for several bounces depending on the losses in the cable. It is not unusual to see 3-5 of these reflections before they finally decay away, particularly when using the best digital cables, which are usually low-loss. So, how does this affect the jitter? When the first reflection returns to the DAC, if the transition already in process at the receiver has not been completed, the reflection voltage will superimpose itself on the transition voltage, causing the transition to shift in time. The DAC will sample the transition in this time-shifted state, and there you have jitter. Let's look at a numerical example: If the rise time is 25 nanoseconds and the cable length is 3 feet, then the propagation time is about 6 nanoseconds. Once the transition has arrived at the receiver, the reflection propagates back to the driver (6 nanoseconds), and then the driver reflects this back to the receiver (6 nanoseconds) = 12 nanoseconds. So, as seen at the receiver, 12 nanoseconds after the 25 nanosecond transition started, we have a reflection superimposing on the transition. This is right about the time that the receiver will try to sample the transition, right around 0 volts DC. Not good. Now, if the cable had been 1.5 meters, the reflection would have arrived 18 nanoseconds after the 25-nanosecond transition started at the receiver. This is much better because the receiver has likely already sampled the transition by this time.
Live search